Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a “rotation function” F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
1 2 3 4 5 6 7 8
| A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
|
思路
利用最简单的方法会超时。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| class Solution(object): def maxRotateFunction(self, A): """ :type A: List[int] :rtype: int """ length = len(A) res = [] for i in range(length): tmp = 0 for j in range(length): tmp += j * A[j-i] res.append(tmp) if (len(res)): return max(res) else: return 0
|
把函数变换一下。得到一个关系式,如:
F(1) = F(0) + A数组的和 - (元素个数 * 最后一个元素)
F(2) = F(1) + A数组的和 - (元素个数 * 倒数第二个元素)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| class Solution(object): def maxRotateFunction(self, A): """ :type A: List[int] :rtype: int """ length = len(A) if (length): suma = 0 for i in A: suma += i res = [] cur = 0 for i in range(length): cur += A[i] * i res.append(cur) for i in range(length-1): prev = res[-1] cur = prev + suma - (A[-i-1] * length) res.append(cur) return max(res) else: return 0
|