A magical string S consists of only ‘1’ and ‘2’ and obeys the following rules:

The string S is magical because concatenating the number of contiguous occurrences of characters ‘1’ and ‘2’ generates the string S itself.

The first few elements of string S is the following: S = “1221121221221121122……”

If we group the consecutive ‘1’s and ‘2’s in S, it will be:

1 22 11 2 1 22 1 22 11 2 11 22 ……

and the occurrences of ‘1’s or ‘2’s in each group are:

1 2 2 1 1 2 1 2 2 1 2 2 ……

You can see that the occurrence sequence above is the S itself.

Given an integer N as input, return the number of ‘1’s in the first N number in the magical string S.

Note: N will not exceed 100,000.

Example 1:

1
2
3
Input: 6
Output: 3
Explanation: The first 6 elements of magical string S is "12211" and it contains three 1's, so return 3.

思路

根据题意,利用一个初始的种子数组,生成所需要的长度为n的magic数组。
然后再利用简单的统计技巧,将所有范围内的元素加起来。其和与元素个数的差值就是2的个数;1的个数也很容易得出。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution(object):
def magicalString(self, n):
"""
:type n: int
:rtype: int
"""
seed = [1,2,2]
cur = 2
while( len(seed) < n ):
if (seed[cur] == 2):
if (seed[-1] == 2):
seed.append(1)
seed.append(1)
elif (seed[-1] == 1):
seed.append(2)
seed.append(2)
elif (seed[cur] == 1):
if (seed[-1] == 2):
seed.append(1)
elif (seed[-1] == 1):
seed.append(2)
cur += 1
ans = 0
for i in seed[:n]:
ans += i
return (2 * n - ans)