Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
1 2 3 4 5
| [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
|
Given target = 3
, return true
.
思路
可以利用二分法进行查找。由于矩阵是按行按列顺序组织的,先寻找最后一列的数,哪一个大于并最接近目标数(target)。这个数对应的那一行就是目标数所在的那一行。再在这一行利用二分法寻找即可。总共用两次二分法,时间复杂度是O(log(m+n))。
二分法搜索成功的关键就是要在纸上理清楚思路才行。注意22行、39行low=mid+1的处理方法,不然会让结果陷入死循环。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
| public class Solution { public boolean searchMatrix(int[][] matrix, int target) { if(matrix.length > 0){ if(matrix[0].length > 0){ int start = matrix[0][0]; int end = matrix[matrix.length - 1][matrix[0].length - 1]; if(target < start || target > end) return false; else{ int low = 0; int high = matrix.length - 1; int mid = 0; while(low < high){ mid = (low + high) / 2; if(matrix[mid][matrix[0].length-1] > target){ high = mid; } else if(matrix[mid][matrix[0].length-1] == target){ return true; } else{ low = mid + 1; } } int line = low; low = 0; high = matrix[0].length - 1; while(low < high){ mid = (low + high) / 2; if(matrix[line][mid] > target){ high = mid; } else if(matrix[line][mid] == target){ return true; } else{ low = mid + 1; } } if(matrix[line][low] == target) return true; else return false; } } else return false; } else return false; } }
|